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Abstract

Using comprehensive network and traffic data, we perform an analysis of the Berlin road

network. Demonstrating the the usefulness of approaches from computational network science

in economics, we use an OSM road network representation to identify potentially critical

road segments and build a zero-inflated Poisson regression model to predict accident counts.

Acording to our model, a 13% reduction in traffic, as observed in 2020 compared to 2017,

leads to an unproportional 16% reduction of accidents, making up for 1.3M e in economic

savings. Extrapolations of the data to all traffic accidents reveal highly precise estimates of

the number of accidents as well as their associated economic cost.

ii



Contents

List of Abbreviations v

List of Figures vi

List of Tables vii

1 Introduction 1

2 Literature 3

2.1 Spatial and Road Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Human Mobility on Road Networks . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Data 8

3.1 Trip Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Accident Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Road Network Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The Berlin Traffic Network 16

4.1 Networks in Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Descriptive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Centrality Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Scope Constraints and Limitations . . . . . . . . . . . . . . . . . . . . 25

5 Case Study: COVID-19 and Traffic 28

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Identifying Critical Road Segments . . . . . . . . . . . . . . . . . . . . 28

5.2.2 The Road Segment Congestion Index . . . . . . . . . . . . . . . . . . . 30

5.2.3 RSI Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.4 Estimating Accident Frequency . . . . . . . . . . . . . . . . . . . . . . 36

5.2.5 Model Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Model Estimation and Testing . . . . . . . . . . . . . . . . . . . . . . 39

5.3.2 Traffic Accidents in 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iii



6 Conclusion 48

References 50

A Calculations 61

A.1 Zero-Inflated Poisson Regression Log-Likelihood . . . . . . . . . . . . . . . . . 61

A.2 Zero-Inflated Negative Binomial Regression Log-Likelihood . . . . . . . . . . 62

B Figures 64

C Tables 67

iv



List of Abbreviations

API Application Programming Interface

COVID-19 Coronavirus Disease 2019

cp. compare

e.g. exempli gratia (for example)

GHS(L) Global Human Settlement (Layer)

i.e. id est (that is)

kJ kilojoule

km(/h) kilometres (per hour)

m meter

µg/m3 micro grams per cubic metre

OSM OpenStreetMap

RSI Road Segment Congestion Index

UC(D) Urban Centre (Database)

UN United Nations

v



List of Figures

1 Spatially and formally planar and non-planar graphs . . . . . . . . . . . . . . 5

2 Sample mobility motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The Berlin Waypoint Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Administrative Boundaries of Berlin vs. Urban Centre of Berlin (blue) . . . . 13

5 Berlin Alexanderplatz Network Representations . . . . . . . . . . . . . . . . . 14

6 An undirected (left) and a directed (right) graph with three nodes . . . . . . 16

7 Degree Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Degree distribution of Berlin’s undirected road network . . . . . . . . . . . . 21

9 Example of a node with degree six (OSM ID: 26646276). . . . . . . . . . . . . 22

10 Betweenness centrality and traffic in Berlin . . . . . . . . . . . . . . . . . . . 24

11 Node betweenness, closeness, and straightness centrality in Berlin . . . . . . . 26

12 Isochrones in Berlin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

13 RSI of road segments in Berlin . . . . . . . . . . . . . . . . . . . . . . . . . . 32

14 Spatial Buffering of road segments . . . . . . . . . . . . . . . . . . . . . . . . 34

15 Distribution of critical road segments and accidents . . . . . . . . . . . . . . . 35

16 Model testing - 10-fold cross-validation (RMSE / MAE) . . . . . . . . . . . . 41

17 Model fit - density and distribution functions . . . . . . . . . . . . . . . . . . 42

18 Comparison of predicted and actual vehicle counts . . . . . . . . . . . . . . . 43

19 Traffic volume as counted by traffic detectors in Berlin . . . . . . . . . . . . . 44

20 Examples of main road segments without maximum speed information . . . . 64

21 Isochrones in Dresden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

22 Log traffic volume on road segments vs. number of accidents . . . . . . . . . 65

23 Betweenness centrality and traffic in Berlin . . . . . . . . . . . . . . . . . . . 66

vi



List of Tables

1 Variable descriptions of the trips and waypoints data set . . . . . . . . . . . . 9

2 Variables and variable descriptions for the incident data set . . . . . . . . . . 12

3 Accidents and associated costs in Berlin and Germany in the year 2017 . . . 45

4 Estimated traffic-relevant accidents and associated savings in Berlin and Ger-

many for the year 2020 during the rush hour time windows defined in Section

5.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Extrapolated accident costs of accidents in 2020 in Berlin, estimated savings,

and estimation deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Zero-Inflated Poisson Regression Results . . . . . . . . . . . . . . . . . . . . . 67

7 Zero-Inflated Negative Binomial Regression Results . . . . . . . . . . . . . . . 67

8 Waypoint and trip statistics in three different areas . . . . . . . . . . . . . . . 68

9 Attributes of Berlin’s UC network . . . . . . . . . . . . . . . . . . . . . . . . 69

10 Twenty-five road segments without available maximum speed information from

OSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

11 Estimated traffic-relevant accidents and associated savings in Berlin and Ger-

many for the year 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

12 Accidents and associated costs in Berlin in the year 2020 . . . . . . . . . . . . 71

vii



1 Introduction

Real-world networks, especially spatial networks, have become a popular unit of study with

many applications in fields as different as biology (Bullmore & Sporns, 2009; Mason & Verwo-

erd, 2007), sociology (Garton, Haythornthwaite, & Wellman, 1997; Mislove, Marcon, Gum-

madi, Druschel, & Bhattacharjee, 2007; Scott, 1988), computer science (Alderson, Li, Will-

inger, & Doyle, 2005; Zegura, Calvert, & Donahoo, 1997), or physics (Albert, Albert, &

Nakarado, 2004). In urban geography, road and mobility networks emerge as a particularly

palpable unit of analysis. As the field of (computational) network science has been growing

steadily, much work has been undertaken to describe the mathematical properties of the

latter, but only seldom was the focus of economic nature. Even research concerned with

the topological and structural properties of city road networks rarely discuss economic im-

plications. Yet one intricate property of road networks that is beyond their mathematical

description is that they are designed to accommodate traffic.

Traffic affects nearly everyone, everyday, and so the economic interactions of road networks

are numerous. One of the more obvious problems in this matter relates to congestion: can we

learn from a network’s mathematical properties where it is prone to congestion (Amézquita-

López, Valdés-Atencio, & Angulo-Garćıa, 2021) or bad air quality? Can we track the drivers

responsible for the most road traffic on certain roads (P. Wang, Hunter, Bayen, Schechtner, &

González, 2012), given traffic data is available? Another problem of high traffic is an increased

probability of traffic accidents. Here, as well, methods from network science can help us

answering questions such as: can we identify critical road segments that are particularly

prone to accidents?

In this work, we aim to expand on the last question. We draw from comprehensive traffic

and network datasets to (1) describe Berlin’s road network and its graph-theoretic properties,

(2) use the spatial graph representation of Berlin to classify roads into a spectrum of potential

congestion proneness, and (3) perform a pilot case study in which we relate the traffic on

critical road segments to the number of traffic accidents, and calculate the economic savings

resulting from the reduction in traffic caused indirectly by the COVID-19 pandemic.

Using high-resolution traffic and accident data and an open-source graph representation

of Berlin’s traffic network, we combine a computational network-theoretic approach with an

applied economic analysis to exemplify their potential synergies. Notably, with this work, we

contribute to the present state of research in the following ways: we

• use OSM (OpenStreetMap) data to systematically analyse Berlin’s road network,
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• provide an implementation of a road speed congestion index using OSM data, and

• demonstrate the usefulness of approaches from computational network science in sup-

porting and enable certain economic analyses.

Moreover, all source code is released in a public GitHub repository1, including easy-to-

read notebooks with all calculations, data preparation steps, and code for figures, which can

be readily adopted for the use in related projects answering different research questions.

Results indicate that computational network analysis can aid in answering economic ques-

tions: based on the traffic data at hand and a predictive zero-inflated Poisson regression

model, we estimate that 127 traffic-relevant accidents were avoided due to less traffic on

Berlin’s roads, accumulating approximately 1.3M e in economic savings. Further analysis

shows that simple extrapolation yields surprisingly precise results: when we estimate the

total number of traffic accidents for 2020, our result underestimates the real number by only

2.86%, while our estimated cost for these accidents underestimates the real cost by 4.61%.

The remainder of this thesis is structured as follows: Section 2 provides an overview of

the literature on spatial networks and mobility. Then, the data and technology used are

introduced in Section 3. Subsequently, network-theoretic aspects are discussed in Section 4,

where a primer in graph theory is given (Section 4.1), along with a descriptive and compara-

tive analysis of the Berlin road network (Section 4.2). Section 5 presents the case study. We

describe its methodology in Section 5.2, including the identification of critical road segments,

and how we model accident frequency based on traffic volume. In Section 5.3, empirical

results are discussed, section 6 concludes.

1https://github.com/thiesben/thesis-when-traffic-hits
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2 Literature

2.1 Spatial and Road Networks

While the study of networks has a long history and was particularly pronounced in sociology

and graph theory, modern network science emerged as late as the first decade of the 21st

century. Network science combines quantitative aspects (especially graph theory, statistics

and statistical physics), computational aspects (efficiency of algorithms, data management,

software) and empiricism, as its primary focus is on application (Barabási & Pósfai, 2016).

Here, we focus on a special kind of such networks, namely road networks as a sub-category

of spatial networks.

Spatial networks today are found, e.g., in transportation, infrastructure, and biology, as

in neural networks. Early comprehensive work in spatial networks that already discusses

tools for analysis and possible models is provided by Haggett and Chorley (1969). Kansky

(1965) introduced measures to characterize roads and highways, and Taaffe, Morrill, and

Gould (1963) proposed a model to describe road network evolution in cities (Barthelemy,

2018). These studies were based mostly on graph theory and had their foundation in the

discipline of geography. According to Barthelemy (2018), these early studies were constrained

by the computational power of their time, and by not taking into account topological aspects

of spatial networks. Thirty years later, when Watts and Strogatz (1998) published their

seminal paper on small-world networks, and Barabási and Albert (1999) discovered scale-free

networks, network analysis as a tool to describe all kinds of complex systems spread heavily

across disciplines (Barabási & Pósfai, 2016; Barthelemy, 2018). The scale-free property is

exhibited by functions y = f(x) whose slope in the log-log plot is the same over all x,

meaning that whatever range of x values one is looking at, one will always observe the

same proportion of small to large y values. Scale-free networks are characterised by their

degree distribution: most nodes will have very few links, while a small number of nodes will

have a larger number of links (cp. Figure 7 (c)). Small-world networks have two important

properties: first, they typically display high degrees of clustering and second, they have small

characteristic path lengths (see Section 4.1)2. But despite these developments, the aspect of

space had largely been ignored (Barthelemy, 2018). Due to the importance of space for real-

world networks, especially because “there is a cost associated to the length of edges which in

turn has dramatic effects on the topological structure of these networks” (Barthélemy, 2011,

2Hence the name by analogy with the small-world phenomenon, which postulates that, on average, anybody
is separated from anybody else by only six people (Travers & Milgram, 1969)
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p. 1), the same author provides a comprehensive review of characteristics of spatial networks,

important empirical observations, models of and processes on spatial networks.

Considering the field of road networks specifically, past research often focussed on typical

properties and the structure of such networks. Crucitti, Latora, and Porta (2006) analyse

the road networks of 1-square-mile street pattern samples from 18 planned and self-organised

cities in terms of four different centrality measures and find that the networks of self-organised

cities exhibit scale-free properties in the distribution of Betweenness Centrality (see Section

4.1 for a definition). Cardillo, Scellato, Latora, and Porta (2006) use a similar sample to study

and compare basic properties of road networks in cities. They find that nodes (junctions) with

more than five adjacent roads are rare, and that planned cities are different from self-organised

ones in terms of their degree distribution and other measures. Jiang and Claramunt (2004)

analyse the road network of three different cities in its functional view (dual3 representation)

to perform structural analyses using street connectivity, average path length and the network

clustering coefficient, and show that those networks form small-world networks but do not

exhibit the scale-free property. Jiang (2007) considers a larger sample of 40 US cities and

finds, in contrast, that the dual representation of these networks display a scale-free property

for street length and connectivity degree. More concisely, he finds that only 20% of all

streets in a given network have a degree or path length greater than the average. Of these

20%, 1% are suitable to serve as a backbone of the whole network. Moreover, the author

conjectures that 20% of the streets account for 80% of the traffic flow. This is solely based on

network characteristics, not on traffic data. Lämmer, Gehlsen, and Helbing (2006) analyse

the road networks of 20 German cities in their primal representation, provide descriptive

statistics, and come to similar conclusions as Jiang (2007). Kalapala, Sanwalani, Clauset,

and Moore (2006), too, observe scale-free degree distributions of road networks in the dual

representation and additionally find that journeys across national road networks have a largely

identical structure, independently of their length. Buhl et al. (2006) provide an analysis

of topological patterns of 40 mostly European settlements and introduce a “meshedness

coefficient” describing the structure of the graph (tree-like vs. planar). Connecting graph

properties with economic activity, some authors find strong correlations between centrality

measures and economic activity (Porta et al., 2012, 2009; Strano et al., 2007).

Most of these studies work with undirected planar street network models. While omitting

3In the dual representation of a road network, instead of edges representing road segments and nodes
representing junctions (as in the primal representation), junctions are operationalised as edges that connect
different streets.
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Figure 1: Spatially and formally planar and non-planar graphs

Notes: Spatially and formally planar and non-planar graphs following Boeing (2020d). Formal planarity
is explained in the main text. Spatial planarity is similar, but depends on the geometric embedding of
the graph. For example, formally, the left and middle graph are the same (they can be drawn the exact
same way), but they differ spatially, because in one graph, two edges overlap, whereas in the other they do
not. Left: a spatially and formally planar graph. Middle: This graph is spatially non-planar, but formally
planar, because it can be drawn without an edge intersection. Right: a spatially and formally non-planar
graph. Red dots indicate the nodes that would have to be added to make the spatial representation planar.

the direction of edges is a simplification of the real circumstances with unclear implications,

assuming planarity can have serious consequences for analysis. A planar graph is a graph that

can be drawn without overlapping edges except where they intersect in joint nodes (Figure 1).

There are some classical mathematical results for planar graphs, which many measures rely

on (Barthélemy, 2011), and they offer computational simplicity and algorithmic tractability

(Boeing, 2020d). But real road networks, with tunnels, over- and underpasses, are rarely

planar. Boeing (2020d) examine the effects of imposing planarity on road networks, e.g., by

adding artificial nodes at every line intersection of the non-planar graph. They introduce three

measures describing the degree of planarity of a graph and the degree of network characteristic

misrepresentation of a graphs planar version and conclude that imposing planarity breaks

routing and network-based accessibility modelling, misrepresents connectivity and over- /

underestimates intersection counts and average edge length, respectively.

Another criticism that many of the earlier studies face is that they were based on anal-

yses of road networks of limited scale (e.g., one square mile grids), and it might be hard

if not impossible to capture the properties of a city’s road network by analysing a likely

unrepresentative part of it.

A comparatively recent development has been the large-scale analysis of road networks

made possible through open data becoming increasingly more available, especially since the

advent of OpenStreetMap (OSM, see Section 3.3) and a corresponding API, providing broad

access to street network and related data. Eventually, obtaining and analysing these data

5



became much easier following the introduction of OSMNx (Boeing, 2017), a python package

designed for doing just this. Since then, a multitude of studies were conducted analysing

large-scale road networks. For example, descriptive analyses were conducted for major cities

in Ghana (Dumedah & Garsonu, 2021), every city, town, urbanized area and Zillow neigh-

bourhood4 of the US (Boeing, 2018), and every urban area of the world (Boeing, in press).

OSMNx was also used to explore spatial order, urban fabric patterns, and street network orien-

tation (Boeing, 2019b, 2021), as well as the evolution of street patterns on tract-level street

networks in the US Boeing (2020c). Moreover, using OSM data and OSMNx, Shang et al.

(2021) estimates the environmental impact of bike sharing in Beijing during the Covid-19

pandemic, Abdulla and Birgisson (2021) examine the robustness of road networks to flood-

ing, and Boeing (2019a) analyse the circuity of walkable and drivable road networks and find

that walkable routes allow for more direct routes than drivable ones in 40 US cities. This

thesis will add to the existing research in that we use OSMNx and OSM to analyse the Berlin

road network and identify potentially critical road segments. To establish a link with an

economic application, we will use this identification method to predict the number of avoided

accidents in 2020 due to reduced traffic.

2.2 Human Mobility on Road Networks

A closely related area is the science of human mobility. Here, we will highlight a few inter-

esting results. After Marchetti (1994) discussed the idea of a fixed daily travel time budget,

D. M. Levinson and Kumar (1994) and D. Levinson and Wu (2005) formulated the rational

locator hypothesis, which states that individuals’ travel times stay approximately steady over

years, even if commuting distance and congestion changes. However, they object the idea of

fixed personal travel time budgets, as the stability of travel time seems to depend on urban

structure and geography. Drawing from the idea that mobility is essentially about energy,

Kölbl and Helbing (2003) measure the energy consumption (in kJ/min, calculated based on

the related O2 consumption of the human body) of different modes and find that the average

journey times for different modes of transport are inversely proportional to the energy con-

sumption rates measured for the respective human physical activities. Consequently, given

an energy budget, a mode that requires more energy is associated with less average travel

time. Scaling the travel time distributions of the different modes, the authors find a univer-

sal functional relationship, pointing to a law of constant average energy consumption for the

4https://www.zillow.com/research/data/
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physical activity of daily travel. Lastly, Schneider, Belik, Couronné, Smoreda, and González

(2013) analyse daily human mobility patterns. Based on mobility data of different sources,

the authors identify 17 unique daily mobility patterns (motifs) that make up up to 90% of

the mobility patterns in the three datasets. Motifs essentially describe network patterns or

subnetworks that appear more often than expected (Alon, 2007). In this case, a motif de-

scribes a movement profile encompassing all visited locations and the directed connections

between those locations. For example, the leftmost motif in Figure 2 might describe the daily

trips of a person who commutes to work and prefers to visit two other locations in just one

trip, whereas the rightmost describes a commuter with only one daily destination. Barbosa

et al. (2018) provide an in-depth discussion of mobility models and applications.

Figure 2: Sample mobility motifs according to Schneider et al. (2013)

7



3 Data

3.1 Trip Data

We rely on three main data sets. The first is provided by mobility data provider Inrix5

and features trip data from approximately 7% of the traffic in Berlin in 2017. It contains

data about a total of 34,209,113 unique automotive trips either originating in, ending in, or

passing through Berlin, Germany, during the whole year 2017. Trips start as soon as the

GPS device is turned on (e.g., when the car’s engine is started or the app is turned on) and

end when the device is turned off. Ten minutes without activity, that is, without a change in

GPS coordinates or without transmission of coordinates, also mark the end of a trip6.

The data set comprises information from (1) connected car data, (2) floating car data,

(3) data from satellite navigation devices (Satnavs), and (4) commercial fleet data. For

every trip, connected cars wirelessly transmit high-frequency GPS data. The term “floating

car data” refers to similar data from mobile devices. Satnavs were the most widely used

navigational devices until a few years ago. Commercial fleet data comes from, e.g., taxis, or

heavy-duty vehicles such as trucks. The threat of sample selection bias is alleviated by relying

on different data sources. For example, while younger drivers may be over-represented in (2),

they may be under-represented in (3). However, the identification of individual drivers in

the data set is virtually impossible, as several attempts at anonymisation have been made

to adhere to data protection regulations. Therefore, assigning several trips to single drivers

becomes a daunting task. This is a severe impediment, as certain questions regarding human

mobility, transport related on a city level (e.g., concerning daily mobility energy consumption

or mobility motif analyses as outlined in Section 2.2) are difficult to answer with these data.

A viable approach seems to be the clustering of trips according to their geographical start

and end points in order to identify recurring and consistent driving patterns (Koch, Ritter,

Rohlf, & Thies, 2021).

Overall, the trip data consists of two components. On the one hand, there is an origin-

destination data set with latitude / longitude coordinates of start and end points for each

unique trip ID and several variables describing properties of the vehicle as well as summary

statistics of the trip. On the other hand, there is a data set which records waypoints of each

trip as timestamped in-between GPS markers. This data set also holds information on a

5https://inrix.com/
6For instance, there are trips in the data set with a travelled distance of 10 meters on a busy highway. This

may result from congestion on this highway, as the data-transmitting car turns on and off frequently in the
stop-and-go traffic.
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Table 1: Variable descriptions of the trips and waypoints data set

Variable Name Type Description

T
ri

p
D

a
ta

TripID string Unique trip identifier
DeviceID string Unique device identifier
StartDate datetime The trip’s start date and time in UTC
EndDate datetime The trip’s end date and time in UTC
StartLocLat decimal Latitude coordinate of the trip’s start point in degrees
StartLocLon decimal Longitude coordinate of the trip’s start point in degrees
EndLocLat decimal Latitude coordinate of the trip’s end point in degrees
EndLocLon decimal Longitude coordinate of the trip’s end point in degrees
DrivingProfile integer Vehicle class (consumer, taxi, delivery, for-hire truck)
VehicleWeightClass integer Weight class (light- / medium- / heavy-duty)
TripMeanSpeedKph decimal The trip’s mean speed in km/h
TripMaxSpeedKph decimal The trip’s maximum speed in km/h
TripDistanceMeters decimal Total distance of the trip in meters
MovementType integer Indicates if the trip is moving or not

W
a
y
p

o
in

t
D

a
ta

TripID string Unique trip identifier
DeviceID string Unique device identifier
WaypointSequence integer Order of the waypoint within the trip, incrementing from 1
CaptureDate date The waypoint’s capture date and time in UTC
Lat decimal The waypoint’s latitude coordinate in decimal degrees
Lon decimal The waypoint’s longitude coordinate in decimal degrees
RawSpeed decimal The speed measured at the time of the waypoint
RawSpeedMetric string The speed’s unit of measurement

Notes: Unpopulated or deprecated variables have been excluded from the summary. TripID and DeviceID
variables are present in both data sets.

vehicle’s velocity. Table 1 presents variable descriptions.

Many different sources of data have been used in the literature to assess traffic and /

or mobility patterns on routes of interest. Among them are surveys, mobile phone records,

data from traffic detectors, data from GPS devices, and others. Surveys are useful to assess

information about travel activities and purposes, as well as travel times. For example, the

Chicago Metropolitan Agency for Planning provides data for two such surveys7, and Liang,

Zhao, Dong, and Xu (2013) use similar data for the Los Angeles area. Drawbacks of surveys

include the comparatively low number of respondents and the narrow geographic and tempo-

ral scope. Call Detail Records (CRS) of mobile phones that contain information about time

and the location of the cell tower routing the communication provide a much finer grained

spatio-temporal resolution than surveys and have the advantage that mobile phones are com-

monly only used by their owners only. Such records were used, e.g., by Schneider et al. (2013)

and P. Wang et al. (2012), even though this kind of data is not often available to researchers.

Data from traffic detectors, such as freeway loop detectors, are the most common source of

traffic flow data on freeways (Vanajakshi & Rilett, 2004). While their capability to measure

7https://www.cmap.illinois.gov/data/transportation/travel-survey
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traffic flows and vehicle presence is used, for instance, for real-time traffic information boards,

forecasting, and other applications, they come with several disadvantages. First, their loca-

tions are necessarily fixed, and they are almost exclusive to freeways. Thus, they do not

cover different road types and city locations. They also suffer from equipment malfunctions.

Barbosa et al. (2018) discuss additional sources of traffic and mobility data. Among all of

these types of data, GPS is the one with the highest resolution and accuracy. However, one

challenge of GPS devices is that they need a battery to function and that GPS coverage is

unavailable in certain places, such as tunnels. Another typical drawback of GPS data is that

if it is available, it is rather sparse in comparison to, e.g., mobile phone data (Barbosa et al.,

2018). Fortunately, that does not apply in our case.

To use the data, not much prior cleaning is required. While applications which depend

on reasonably defined individual private trips are well advised to exclude trips with lengths

below a certain threshold and artifacts such as trips starting and ending at the same point

in space or those made by commercial vehicles (Koch et al., 2021), we focus on traffic rather

than trips, so we retain these observations. For further processing, we use all waypoints that

fall into the administrative bounds of Berlin, or, respectively, in the Urban Centre of Berlin,

which is defined in Section 3.3. Table 8 provides waypoint and trip statistics for the Berlin-

Brandenburg region, Berlin in its administrative boundaries, and the Urban Centre of Berlin.

Moreover, from the total sample of 34,209,113 trips, we select a sample of 20,000 (ca. 0.06%)

trips and 631,525 corresponding waypoints to exemplify the precision of the waypoint data.

Figure 3 (a) shows the driven routes of this sample within a bounding box encompassing

Berlin. Following Bazzani, Giorgini, Rambaldi, Gallotti, and Giovannini (2010), in Figure

3 (b), the same sample is represented in a zoomed-in clipping of Berlin, coloured by speed

categories.

3.2 Accident Data

The second data set comprises information on accidents provided by Inrix in the form of a

larger traffic incident data set for the year 2017. Incident types include construction work,

accidents, closures and lane restrictions, weather conditions, and many others. Inrix uses

several sources to retrieve these kind of data, especially official police records. Incidents are

not recorded with high geographic precision, instead, they are mapped to the nearest junction,

exit, or similar intersection point. Table 2 contains variables and variable descriptions8.

8More details can be found at http://docs.inrix.com/ra/incidents/
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Figure 3: The Berlin Waypoint Data

(a) (b)

Notes: (a) Traffic in and around Berlin. Lines are extrapolated from a sample of randomly selected
waypoint sequences, the arterials (especially highways A9 and A10) are clearly distinguishable. (b) Single
waypoints in a part of Berlin-Charlottenburg. Red dots correspond to a recorded current velocity of less
than 30 km/h, yellow dots correspond to a velocity between 30 and 60 km/h, and green dots to a velocity
of 60 km/h or more.

We limit the incident data to accidents which either (1) fall into the subcategory “acci-

dent” as classified by Inrix or (2) contain the word “accident” (without regard to capitali-

sation) in either the full description or the event text columns. The latter step is necessary

because some incidents classified as accidents by the data provider had incongruous descrip-

tions, for example “Lane closed due to maintenance work on A11 Southbound between 15

L304 Wandlitzer Chaussee and 16 L200 Schwanebecker Chaussee.”. After filtering, 3,224

accidents remain in the dataset. The number of accidents is relatively small, because Inrix

only records the traffic-relevant ones, i.e., which affect the traffic in some way. For instance,

accidents in which a car damages another while parking, and which do not affect traffic in

any way, may not appear in the accident data set, even if they are recorded by the police.

3.3 Road Network Data

The third data set is a preprocessed representation of Berlin’s road network by Boeing (2020a,

in press). We use this particular data because it provides an attempt at standardization for

the possibly global comparison of road network models, which is much needed, given the many

sources of road network data one can find in the literature. Boeing (in press) first derives

urban area boundaries from the GHSL Urban Centre Database (UCD) 9. The GHSL (Global

Human Settlement Layer) project uses satellite imagery, census data and volunteered geo-

graphic information to produce knowledge primarily concerned with the human presence on

9https://data.jrc.ec.europa.eu/dataset/53473144-b88c-44bc-b4a3-4583ed1f547e, version 1.2
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Table 2: Variables and variable descriptions for the incident data set

Variable Name Type Description

id string Unique incident ID
severity integer severity of impact, 0-4, 4 is highest
is road closure string “Yes” if incident causes a road closure, else “No”
category ids integer Main Incident Category, e.g. “1:Construction”
sub category ids integer Incident Subcategories, e.g. “1:Roadworks”
full description string Incident description
earliest start time local seen datetime Earliest local date and time seen for the incident
latest end time local seen datetime Latest local date and time seen for the incident
direction string Impacted road direction, e.g. “Northbound”
event text string Brief description, e.g. “Road closed, construction”
location type string Location type of the incident, e.g. “Point”, “Linear”
length decimal Impact length of incident if location type is “Linear”
lat float Latitude coordinates of the incident in degrees
lon float Longitude coordinates of the incident in degrees
bidirectional boolean Indicates if the incident impacts both sides of a road
frcs integer List of functional road classes (e.g., FRC 3:“Arterials”)

impacted
causes string Cause of the incident, e.g. “2-Accident” for a road

closure incident
effects string Effects of the incident, e.g. “8-Road closed” for an

accident incident.
infos string Additional information text, e.g., “1277-drive with

extreme caution”
alertCs string AlertCode, e.g. “1277-drive with extreme caution”
schedule string Days of week and local times the construction is active,

if construction is scheduled

earth. The UCD comprises of so-called “urban centres”, whose definition is not derived from

national sources, but rather has been developed by the European Union, the Organisation

for Economic Cooperation and Development, the World Bank, the UN Food and Agricul-

ture Organization, and the UN Human Settlements Programme. (Florczyk et al., 2019) The

“Urban Centres” (UC) are defined formally as

“[...] the spatially-generalized high-density clusters of contiguous grid cells of 1

km2 with a density of at least 1,500 inhabitants per km2 of land surface or at least

50% built-up surface share per km2 of land surface, and a minimum population

of 50,000” (Florczyk et al., 2019, p.13).

Berlin’s UC definition deviates from the official administrative boundaries (Figure 4).

The drivable street network of the UC Berlin is then queried from OpenStreetMap (OSM)

and processed using OSMNx for Python (Boeing, 2017) (see Section 3.4). OpenStreetMap is

an “open-source, collaborative, worldwide mapping project and database” (Boeing, in press,

p.3), comprising map data, including information about addresses, speed limits, widths and

lengths of roads, number of lanes, and points of interest. Its coverage is vast, and its almost
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Figure 4: Administrative Boundaries of Berlin vs. Urban Centre of Berlin (blue)

8 million contributors (OpenStreetMap, 2021) have managed to achieve 83% completeness

worldwide in 2016, and complete street networks in 40% of countries (Barrington-Leigh &

Millard-Ball, 2017). Even though the Berlin user base does not declare full completeness of

their street network, as do many German cities in the project’s “hall of fame”10, Germany has

a particularly active user base, and according to Seifert (2021), across all boroughs (Bezirke)

in Berlin, streets are at least 96.5% complete. Therefore, OSM provides a free and good source

of map information (Haklay, 2010; Ludwig, Voss, & Krause-Traudes, 2011; Neis, Zielstra, &

Zipf, 2012).

The network is represented as non-planar directed primal multigraph11. Service roads

and streets where motor traffic is forbidden are excluded. Moreover, the raw network that

is retrieved from OSM is topologically simplified by OSMNx to enable meaningful network

analyses, since raw OSM data comprises of nodes connecting straight-line edge segments.

Subsequently, nodes represent intersections or dead-ends, and edges are the connecting road

segments. Figure 5 shows a part of the Berlin network with and without simplification. To

prevent adverse periphery effects originating from enforced artificial boundaries on the street

network, OSMNx downloads a larger part of the graph and calculates node degrees before

removing edges and nodes that fall outside the specified area (Boeing, in press).

Finally, information on node elevation is available from the Advanced Spaceborne Ther-

mal Emission and Reflection Radiometer v2 (NASA/METI/AIST/Japan Spacesystems &

10https://wiki.openstreetmap.org/wiki/Hall of Fame/Streets complete)
11A multigraph allows for more than one edge (road) between two nodes (junctions).
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Figure 5: Berlin Alexanderplatz Network Representations

Notes: Raw OSM network data (left) and simplified road network data by OSMNx for Berlin, Alexander-
platz. Red dots signify nodes.

U.S./Japan ASTER Science Team, 2009) or the Shuttle Radar Topography Mission (SRTM,

EROS Earth Resources Observation and Science Center (2017)). This dataset is available

as .graphml file in the Harvard Dataset and includes information about 39 indicators (see

Table 9 in the appendix) (Boeing, 2020a, 2020b, in press).

Waypoint data is combined with the network data as follows: first, the data is limited to

the 850,587,925 waypoints within the Berlin UC area. For each individual waypoint, we use

OSMNx to find the nearest edge in the road network. If the edge is farther than 50 meters away

from the waypoint, we drop the observation. The threshold is arbitrary, but note that 90%

of the waypoints were mapped onto the network with an accuracy of about 23 meters. note

that the waypoint data has a precision of ca. 10m since they are mapped on a geographic

grid defined by the fourth decimal in latitude / longitude coordinates. Moreover, precision

also depends on the original signal and transmitting device. 22,167,933 (∼ 2.6%) waypoints

were removed using this criterion.

Comparing trip data within three different areas, the general trip statistics do not differ

much (Table 8). Regarding trips that either start or end in the respective area, the Berlin

UC has about 500,000 less trips than Berlin in its administrative boundaries. Average speed,

distance and duration are virtually the same, as well as their maximum counterparts.

3.4 Technology

We processed all data using Python 3.8 in conjunction with Jupyter Notebooks which are

also available as supplementary material to this thesis. Python (Van Rossum & Drake, 2009)

is a high-level all-purpose programming language. It is highly flexible and more user-friendly
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compared to compiled languages such as C++. However, it is slower than compiled languages,

even though many popular packages make use of C and C++ for computational efficiency.

Jupyter Notebooks (Thomas et al., 2016) offer an interactive interface for Python for a

structured and reproducible workflow. We ran most computations on the high-performance

cluster system at Potsdam Institute for Climate Impact Research Germany.

OSMNx (Boeing, 2017) is a Python package that builds on the popular network analysis

package NetworkX (Hagberg, Schult, & Swart, 2008). It adds substantial functionality to

include, amongst many others, spatial attributes in graphs. Its main contributions are that

it allows automated downloading of street network data from OpenStreetMap, includes algo-

rithms to correct network topology, enables saving and loading of these networks and, finally,

provides tools to analyse street networks.
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4 The Berlin Traffic Network

4.1 Networks in Graph Theory

In the present thesis, we wish to discuss the Berlin traffic network’s properties and use it

to identify critical links that we will use for further economic analysis. Before doing so, we

introduce basic aspects of graph theory. Additional characteristics are discussed in more

detail in Barabási and Pósfai (2016). Here, we focus solely on the primal representation of

the graph, which is also non-planar.

A graph representing a network usually consists of nodes, or vertices, and the connections

between them, termed edges, links, or arcs. A graphs is called directed if all of its edges are

directed, and they are called undirected if all of its edges are undirected. Technically, a graph

can be both if some of the graphs edges are directional and some are bi-directional, which

can be interpreted as undirected. More formally,

Definition 1. A directed graph (digraph) is a pair G = (V,E), where V is the set of nodes

and E ⊆ V × V is the set of directed edges.

An undirected graph is a pair G = (V,E), where V is the set of vertices and E ⊆
(
V
2

)
is the

set of undirected edges. In this notation,
(
V
2

)
is the set of all 2-element subsets of V.

For example, the Facebook friend network is undirected, because if u is friends with v, v

is automatically friends with u. The Twitter follower network is a directed network, since u

can follow v while v must not necessarily follow u back. Road networks in the real world are

usually directional, because even though most roads can probably be lawfully driven in both

directions, there still exist one way streets. Note, that by the above definition, self-loops are

not possible in undirected networks, since {u, u} 6∈
(
V
2

)
.

Figure 6: An undirected (left) and a directed (right) graph with three nodes
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Let N denote |V |, the total number of nodes in the network (also called size of the

network), and L denote |E|, the total number of edges in the network. Nodes are usually

labeled (e.g., u, v, w) or indexed (ui, i = 1, 2, ..., N). Edges are not indexed or labelled, since

they can be identified by the two nodes they connect, e.g., (u, v) is the link between u and

v. Adjacent nodes (i.e. nodes that are connected by an edge) are called neighbours:

Definition 2. A node u is called neighbour of or adjacent to a node v if there is an edge

(u, v) ∈ E connecting them in G(V,E). If G is directed, u is an in-neighbour of v if (u, v) ∈ E

and an out-neighbour if (v, u) ∈ E. Edges are neighbours if they share a node.

Definition 3. The neighbourhood of a node u ∈ V in an undirected graph G is defined as

the set of all its neighbours: NG(u) = {v|{u, v} ∈ E}. In case G is directed, Nout
G (u) =

{v|(u, v) ∈ E} denotes the out-neighbourhood while N in
G (u) = {v|(v, u) ∈ E} denotes the

in-neighbourhood.

Knowing about neighbourhoods, we can now define the degree:

Definition 4. The degree kG(u) of a node u ∈ V in an undirected graph G is defined as the

size of its neighbourhood, kG(u) = |NG(u)|. Similarly, in a directed graph G, we define the

in-degree kinG (u) =
∣∣N in
G (u)

∣∣ and out-degree koutG (u) =
∣∣Nout
G (u)

∣∣ of a node u ∈ V . The (in- /

out-)degree for the ith node in G is frequently written as ki (kini /kouti )

Note that in an undirected graph, the total number of links can be expressed as the sum

of the node degrees

L =
1

2

N∑
i=1

ki, (1)

where the 1
2 factor accounts for the fact that in the sum of node degrees, every edge is counted

twice. In a directed graph, it holds that

L =

N∑
i=1

kini =

N∑
i=1

kouti , (2)

with the factor from Equation 1 missing, because the total degree of a node in a directed

graph is ki = kini + kouti , so that each of the two summands separately account for one half

of the total number of edges already. We can now calculate a graph’s average degree for

directed and undirected networks:

〈k〉 =
1

N

N∑
i=1

ki =
2L

N
, (3)
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Figure 7: Degree Distributions

(a) (b) (c)

Notes: Degree distributions of different networks. Distributions are usually discrete, hence bar diagrams
often capture their basic nature. However, for distributions with many degrees, such as in (c), other
displaying options are more suitable. (a) The degree distribution of the Berlin Traffic Network (see 4.2).
(b) The degree distribution of the undirected version of the triangle (Figure 6). All nodes have degree 2.
(c) The degree distribution of follower counts of influential Twitter users (blue dots). The x axis denotes
the in-degree (follower count) and the y axis the probability to observe a user with the respective follower
count. The data for the graph is taken from Münch, Thies, Puschmann, and Bruns (2021). The social
network almost exerts the scale-free property (following a power law with exponent γ ≈ −2.54, orange
line), but it is not a perfect fit; probably due to the authors’ sampling strategy.

〈kin〉 =
1

N

N∑
i=1

kini = 〈kout〉 =
1

N

N∑
i=1

kouti =
L

N
. (4)

The average degree is an important statistic and is usually indicative of the networks

underlying structure. The average degree can differ greatly across networks of different types,

and we will see that road networks tend to have a small average degree. For an even better

description of the network we can look at the degree distribution of the graph G

PG(k) =
Nk

N
, (5)

where Nk denotes the number of nodes with degree k. For directed networks, in- and out-

degree distributions can be set up equivalently, and a joint probability distribution takes the

form

PG(kin, kout) =
Nkin +Nkout

N
, (6)

which is the probability of a node in G having in-degree kin and out-degree kout. For undi-

rected networks, degree distributions are simply the normalized histogram of node degrees;

the degree distribution of directed networks can be displayed either by plotting in-degree

and out-degree distributions separately, adding up in- and out-degree to a total degree and

only show the total degree distribution, or by using three-dimensional plot techniques such

as surface plots. Degree distributions can differ heavily across networks, see Figure 7.

The degree distribution can tell something about the networks general structure and
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about its robustness. Robustness in networks has its roots in percolation theory, and the

primary question revolves around the impact of node failures on the integrity of a network.

In other words, the question becomes what fraction of nodes (and which ones) have to be

removed from a network to divide it in two or more disconnected components (see below).

Next comes the concept of paths. Other than in real-world applications, mathematically,

physical distance is not a concept of particular interest in graphs and is replaced by path

length.

Definition 5. A path is an ordered sequence of adjacent nodes, allowing for repeats. A

simple path is a path without repeats.

Path length is then equal to the number of nodes crossed (or, the number of edges that

the path contains). We are often interested in the (length of the) shortest path duv between

two nodes u, v. The shortest path is the path with the fewest number of edges crossed. While

duv = dvu holds for undirected networks, this is not necessarily the case for directed networks.

In fact, the existence of a path duv does not imply the existence of a path dvu. Path lengths

are of special importance to Betweenness Centrality, a centrality measure for graphs. If there

is a path between two nodes u and v, these nodes are called connected, otherwise they are

disconnected and duv =∞. This extends to whole graphs:

Definition 6. A graph is connected if all pairs of nodes in the graph are connected. The

graph is disconnected if there is at least one disconnected pair of nodes.

If a graph is disconnected, there exist at least two different components, i.e., disconnected

parts of the graph. Graphs can be equipped with weights, and if they are, we call them

weighted and they are defined as follows:

Definition 7. A weighted graph is a triple G = (E, V,w), where w : E → W is a function

mapping edges to their weights, and W is the set of possible weight values.

Many things can be used as weights. In a road network, it makes sense to use edge lengths

(distances) or traffic density as weights.

There exist many different centrality measures for a graph that describe certain prop-

erties of the graph’s nodes or edges. Three of them are Closeness Centrality, Betweenness

Centrality, and Straightness Centrality. In this text, we adopt the definitions used by Crucitti

et al. (2006).
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Definition 8. Closeness Centrality is a measure of closeness of a node i to all other nodes

j ∈ G and it is defined as

CCi =
N − 1∑
j∈G;j 6=i dij

(7)

In its weighted version, each element in the denominator is multiplied by some weight. In the

case of spatial networks, it is sensible to replace dij with the actual distance in units (e.g.,

meters).

Definition 9. Betweenness Centrality is a measure of how much a node i stands between

other nodes j ∈ G, indicated by the number of shortest path between other nodes that i is

part of. It is defined as

CBi =
1

(N − 1)(N − 2)

∑
j,k∈G;j 6=k 6=i

njk(i)

njk
,

where njk is the number of shortest paths between j and k and njk(i) is the number of

shortest paths between j and k that contain i. In its weighted version, the path lengths are

modified. In the case of spatial networks, shortest paths are not defined by the number of

traversed nodes but by the sum of distances between them.

Betweenness is also defined for edges:

CB(e) =
∑
j,k∈G

njk(e)

njk
,

where njk(e) is th number of shortest paths passing through edge e.

Definition 10. Straightness centrality is a measure of how much actual distances from any

node to a node i differ from the straight (Euclidean) distances. It is defined as

CSi =
1

N − 1

∑
j∈G;j 6=i

dEuclij

dij
,

where dij are weighted (i.e., actual) distances and dEuclij are the Euclidean distances between

nodes i and j.

Straightness centrality is directly related to the route factor (or circuity) (D. Levinson &

El-Geneidy, 2009).
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4.2 Descriptive Analysis

Comprehensive descriptive statistics for the graph used in this thesis were already provided

by Boeing (2020b), see Table 9. In this section, we will present several measures for road

networks put forth in the literature, and discuss them in the context of the Berlin road

network. Since many of these measures were only implemented for undirected networks in

the past, we will also use the undirected version of the graph unless otherwise indicated.

Looking at the average degree, we find 〈kin〉 = 2.59 for the directed version of the graph.

When all directed edges are replaced by undirected ones, and redundant edges are removed,

this number becomes 〈k〉 = 3.005. Both numbers are roughly in line with Buhl et al. (2006)’s

result of 〈k〉 ≈ 2.43 for 40 mostly European and North African non-planned settlements, who

are using undirected network representations.

Figure 8: Degree distribution of Berlin’s undirected road network

From the degree distribution (Figure 8), it is evident that the Berlin road network does

not follow a “scale-free” distribution, which makes sense due to its spatial embedding. In

accordance with both Lämmer et al. (2006) and Cardillo et al. (2006), we too observe that

most nodes in the network have a degree less than 5, and that most nodes have either

degree 3 or 4 (see Figure 9 for an example of a rare 6-way street intersection). However,

we do not find that nodes with four neighbours are predominating, as Lämmer et al. (2006)

suggest in their survey for 21 German cities, including Berlin. Taking into account that

their network has a comparatively similar number of nodes but comprises of roughly 45,000

additional edges, one reason for this discrepancy might be that they enforce planarity on

their networks (possible consequences are discussed in Boeing (2020d)). Another is that they
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Figure 9: Example of a node with degree six (OSM ID: 26646276).

probably consider Berlin in its administrative boundaries12. The above degree distribution

also underlines Cardillo et al.’s (2006) finding that self-organized cities (such as Berlin) tend

to display P (k = 3) > P (k = 4) while the inverse seems to be true for single-planned cities.

Courtat, Gloaguen, and Douady’s (2011) organic ratio

rN =
N(1) +N(3)∑

j 6=2N(j)
, (8)

where N(j) is the number of edges with degree j, is also used to indicate whether or not a

city had been planned. If a city was planned, N(4) would be very large due to the presence

of many four-way intersections and rN would consequently approach 0. On the other hand,

rN = 1 if there are no four-way intersections at all. Note that this assumes that N(2) = 0 and

that there are no crossings with more than 4 adjacent roads which is usually the case. For the

undirected Berlin UC network, rN = 0.73, which supports the previous finding. The related

fraction of tree-like structures, i.e., the fraction of dead-end roads amounts to 10.99%, which

is almost as much as Lämmer et al. (2006) find for Berlin. Finally, we can also calculate the

compactness of the graph, as mentioned in (Barthélemy, 2011, p. 9):

Ψ = 1− 4A

(`T − 2
√
A)2

, (9)

where A is the total area of the city and `T the total length of the road network. This measure

gives an indication of how much a city consists of roads. For the Berlin UC network, this

measure is 0.99, but it must be noted that no comparison is available, and that this ratio is

not necessarily equal to the fraction of space that is captured by roads.

12However, when using the OSM road network of Berlin’s administrative boundaries, the discrepancy is still
at about 30,000.
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4.2.1 Centrality Measures

Following Lämmer et al. (2006), we take a look at the (weighted) betweenness centrality of

Berlin’s road network (Figure 10 (a)). Here, the city’s ring-like structure is clearly visible, as

well as the radial streets converging at the city centre. Looking at traffic volume, as measured

by waypoints on street segments, Figure 10 (b) yields a similar picture. In both plots, thicker

roads mean higher betweenness, or volume, respectively. Comparing the two images, they

look quite alike with a few differences. First, (b) may exhibit thick lines and therefore high

traffic volumes, that are not highlighted in (a). This is because in the graph representation,

some roads at the graph’s boundary are not at all “between”, because fewer network roads

are available to be connected in this restricted graph than in reality. A second difference is

that the city centre seems much more cluttered when looking at traffic volume than when

looking at betweenness. This might in fact be a consequence of bad traffic and congestion,

as waypoints on a given road segment naturally increase when there is congestion.

Edge betweenness has been used as proxy for predicted traffic volume in the past (Lämmer

et al., 2006), even though this has later been contested (Gao, Wang, Gao, & Liu, 2013;

Kazerani & Winter, 2009). We test the goodness of this proxy by calculating the Pearson

correlation coefficient. This gives us r ≈ 0.44, p < 0.001, demonstrating that betweenness

might be a reliable but imperfect measure of expected traffic volume or flow.

We also reproduce Crucitti et al.’s 2006 plots for weighted node betweenness and closeness

centrality, as well as straightness centrality (Figure 11). Node betweenness centrality (Figure

11 (a)) reveals a similar picture as seen above, with the main corridors of the city more

well-pronounced. Node betweenness reaches its highest values on the Autobahn (freeway)

A100 south of the city centre. The Bundesstraßen (federal highways) 1, 2, 96, 96a, which

are similarly important as primary movement channels, also exhibit high betweenness values.

Closeness centrality (Figure 11 (b)) is highest in the city centre and decreases from there.

This is due to the nature of the road network, the index itself, and because we are looking

at a part of the whole road network with artificial bounds. There are some dark blue dots

scattered across the map, and by manual inspection we discovered that they are junctions in

parts of the city which are effectively gated from the public or nodes where there is a barrier

such as a gate13. Straightness centrality yields a different picture (Figure 11 (c)). As it

gives an estimate of the mean ratio of direct (Euclidean) distances and actual road network

13Examples for this are some ways in the Kleingartenanlage Fabiansche Erben (a garden plot), and the
industrial area Das Neue Gartenfeld, both of which belong to the little cluster of dark blue points in the north
west.
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distances, values are low where the network is inefficient, i.e., where the network distance

is far higher than the Euclidean distance. Equivalently, one can say that the higher the

straightness at a given node, the more easy it is to reach from all other nodes in the network.

We observe that the whole city centre exhibits rather low straightness, confirming that travel

from outer regions to the center requires complex routing. On the other hand, straightness is

high in the boroughs Spandau and Treptow-Köpenick, as well as along the Autobahn A100

and A113, which makes sense, as they are two of the main connecting corridors. Parts of

Tempelhof-Schöneberg and Steglitz-Zehlendorf in the south and Pankow in the north make

up the other side of the spectrum, making them the boroughs in Berlin where destinations

are reachable least efficiently considering the entire Berlin UC road network.

Lastly, we consider isochrones, as previously done by Lämmer et al. (2006). Isochrones are

lines on which every point is reachable within the same amount of time. For this, we use the

administrative definition of the Berlin road network, since some connectors are missing in the

UC representation. For the isochrones, we assume that the maximum possible speed can be

and is driven. When there is no maximum speed information available, we impute the mean

trip speed of 32.73 km/h (Table 8). We calculate for each road segment the time it needs to

pass it by dividing its length by its maximum speed. Figure 12 displays isochrone polygons.

Given that the isochrones expand spherically from the starting point in the center, it seems

that Berlin’s road network is equally efficient in all directions from the city centre. However,

this is only the case under excellent traffic conditions. We note the difference to Dresden’s

non-spherical isochrones from Lämmer et al. (2006), which we reproduced in Figure 21 in the

appendix.

4.2.2 Scope Constraints and Limitations

Beyond the measures discussed here, other descriptive statistics have been proposed in the

literature, which may be worth examining. Many of these are outside the scope of this work,

as code implementations are inapplicable to our data our entirely unavailable. Examples of

these are ringness, webness, circuitness, and treeness (Xie & Levinson, 2007), which all make

a statement about predefined connection patterns of arterial roads in cities. Moreover, we did

not elaborate on cost and efficiency of the network, which is also related to transport perfor-

mance (Latora & Marchiori, 2003). It would also be interesting to compare the performance

and results of different graph-theoretic community detection methods of city road networks

in general and of the Berlin road network in particular. Finally, since we only consider the
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Figure 12: Isochrones in Berlin

(a) (b)

Notes: This map depicts the road segments and polygonised isochrones of Berlin. Point of reference is a
point in Berlin’s city center (a) or a point in Spandau in the north west (b) Brighter areas are reachable
faster, and the brackets are 5, 10, 15, 20, and 25 minutes under ideal circumstances (driving with allowed
maximum speed and no traffic lights). For instance, someone starting in the Berlin city centre could reach
the Zehlendorf intersection (Kreuz Zehlendorf, end of long straight line segment in the south-west) within
20 minutes (dark purple), given she rides with maximum permissible speed on every road on her way. A
driver from Spandau needs at least 20-25 minutes to the city centre.

primal representation of Berlin’s road network, we are not able to comment on properties of

the network’s dual representation.

Concerning mobility networks, our data does not allow for in-depth analyses of motifs

(Schneider et al., 2013) and mobility energy considerations (Kölbl & Helbing, 2003), because

the lack of unique driver IDs complicates trip bundling at the individual level. Appropriate

spatio-temporal and stochastic trip chaining is a complex problem and was also considered

out of scope for this thesis. However, we encourage researchers to expand on these topics, if

suitable data is available, and build on the existing code base provided with this thesis.

A final limitation of past research in this field, as well as of this work, is that primarily

the undirected road network is analysed. Here, it is done for better comparison with past

work, but in the future, analysing the directed network may yield more accuracy and more

appropriate statistics, e.g., when calculating centrality measures.

27



5 Case Study: COVID-19 and Traffic

5.1 Background

In this part, we use the network representation that we have so far described theoretically and

put it to use for a practical application. The rapid spread of the Coronavirus Disease (COVID-

19), the first global pandemic in the 21st century, has led to a scenario without precedence.

Most countries of the world imposed “lockdowns”, closing all non-essential businesses for

a certain amount of time. Substantial restrictions in travelling were enforced worldwide,

and, in many countries including Germany, employers were asked to offer home office when

and where possible. The economic consequences of the pandemic are yet to be gauged.

Naturally, with a significant share of people working from home and many cultural and social

activities unavailable, road traffic was heavily reduced (see European Data Portal (2020) and

Section 5.3.2). Road traffic reductions result(ed) in reduced congestion and an overall reduced

number of accidents, too (Retallack & Ostendorf, 2020; Statistisches Bundesamt, 2021). In

the following, we want to estimate the economic savings resulting from the reduction in

traffic accidents in 2020 due to less traffic on Berlin’s streets. Using the GPS traffic data as

mapped on the network provided by OSM, we (1) identify road segments that were critical

in 2017 by employing a method from He, Yan, Liu, and Ma (2016), and (2) validate this

identification method by checking whether it captures road segments with many accidents,

polluted road segments, or those with high betweenness centrality implying a high propensity

for congestion (cp. Lämmer et al. (2006)). On identified critical road segments, (3) we

compare different predictive models for the number of accidents on a given road segment, (4)

estimate the number of traffic-relevant accidents in 2020, where the traffic volume was much

lower in comparison to previous years with higher traffic volume, and, finally (5), estimate

the economic savings associated with this reduction.

5.2 Methodology

5.2.1 Identifying Critical Road Segments

Multiple ways have been presented in the literature to identify congested or otherwise critical

roads in a road network. A common approach is the full network scan (Jenelius, Petersen, &

Mattsson, 2006; Taylor, Sekhar, & D'Este, 2006), by which each link is iteratively removed

from the graph and the removal’s effects on network performance are measured. Critical links

are then identified by comparing the effect of removal across all possible links (Chen, Lam,
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Sumalee, Li, & Li, 2012). Since this can become computationally burdensome, especially in

larger networks, methods that work similarly but consider subnetworks instead of the whole

network (Erath, Birdsall, Axhausen, & Hajdin, 2009) or partial networks (Yang, Liu, Li, &

He, 2016) have been introduced. The idea is to reduce the search space by considering only

those areas that are most probably impacted by the node failure in question. More recent

advancements of the full-scan method take origin-destination traffic flows into account (F. Li,

Jia, Luo, Li, & Yang, 2020).

A related strand of literature focuses on the identification and effects of bottlenecks (see

Hale et al. (2016) for a comprehensive review). While many researchers study congestion

propagation by using data from known congested locations (Nguyen, Liu, & Chen, 2017; Tao,

Xi, & Li, 2016; Y. Wang, Cao, Li, & Gu, 2016; Xu, Yue, & Li, 2013), C. Li, Yue, Mao, and Xu

(2020) identify bottlenecks by taking both the cost of congestion at the potential bottleneck

as well as the “contagion” cost of congestion propagating from the original bottleneck into

account. Tian et al. (2021) consider cascading failures as well and introduce a criticality index

for road links that is the product of road link vulnerability (probability of failure) and road

link importance (a function of the impact of failure on subsequent road links). Solé-Ribalta,

Gómez, and Arenas (2016) use an analytical approach to identify congestion hotspots and

introduce the Microscopic Congestion Model, which can be solved using real traffic flow data

and simulated data. Finally, He et al. (2016) define intuitive Road Segment Congestion and

Network Congestion indices.14.

Unfortunately, few to none of the methods described above are readily implemented or

otherwise available in standard software. Therefore, we adopt He et al.’s (2016) method

and implement it ourselves. In the following, we first describe the Road Segment Congestion

Index which lies at the heart of their method. Second, we discuss its implementation using

the waypoint data at hand. Third, we evaluate the accuracy of the method by comparing

the obtained indices with empirically observed data, such as typical congestion hotspots in

Berlin and air quality data from a public network of air quality measuring stations. Fourth,

we discuss feasible models for predicting the number of road segments on Berlin’s streets.

14Notably, edge betweenness is seldom used directly as a measure for proneness to congestion. According to
F. Li et al. (2020), this is because it is not always accurately representing traffic flow and density. For example,
high-betweenness edges can have low traffic flow, thus the impact of corresponding node failures might be less
than expected.
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5.2.2 The Road Segment Congestion Index

In He et al. (2016), the authors build on an existing definition of the Speed Performance

Index, an index used to assess the traffic state level on a given road segment at a given time.

The index reflects the ratio between average speed and maximum permissible speed:

Rvi,t =
vi,t
V max
i

· 100, (10)

where Rvi,t is the Speed Performance Index on road segment i at time t, vi,t is the average

travel speed on road segment i at time t, and V max
i is the maximum permissible speed on

the road segment15. Based on this index, He et al. (2016) categorise road segments into

four traffic state levels using three threshold values: heavy congestion (Rvi,t ∈ [0, 25]), mild

congestion (Rvi,t ∈ (25, 50]), smooth (Rvi,t ∈ (50, 75]), and very smooth (Rvi,t ∈ (75, 100]). With

these categories, the fraction of time that the road is not congested, RNCi . can be calculated:

RNCi =
tNCi
Ti

, (11)

where tNCi is the duration during which road segment i is not congested (i.e., Rvi,t ≤ 50,

so that it falls into either the heavy congestion or mild congestion brackets) and Ti is the

length of the observation period. Finally, the Road Segment Congestion Index, RSI, or Ri is

calculated as follows:

Ri =
R̄vi
100
·RNCi , (12)

where R̄vi is the average Speed Performance Index taken over the time period of observation.

Note that a low Ri stands for bad traffic conditions.

For the calculation of the indices, we use only waypoints from the two “rush hour” time

windows also used by Koch et al. (2021) (06:00 - 09:59 and 14:00-19:59) during weekdays,

as these are the main traffic hours (Hauptverkehrszeiten) (Senatsverwaltung für Umwelt,

Verkehr und Klimaschutz, 2019). We calculate Rvi,t for each road segment and 15-minute

time period in these time windows. Within road segments, we only keep data from time

intervals which have at least 20 observations. That is, if there are less than 20 waypoints on

a given road segment at a given 15 minute time period, this time interval will be dropped

for this road segment. The rationale is that the Speed Performance Index can become very

noisy when there are only few observations. 20 was chosen as a threshold value because it

15While it is possible for a road segment to have different maximum speeds depending on the time of day,
we only consider a fixed road segment speed.
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corresponds to the median value of all observation counts at a given time period and road

segment16.

We retrieve permissible road speed data from OSM using OSMNx for every road segment.

Some road segments consist of sub-segments with differing road speeds. In these cases, we

take the road speed that is valid for the longest distance within the segment17. In some

situations, this might lead to an Rvi,t > 1, in which case this value is replaced by 1. For 4.95%

of the 47,293 road segments considered, there was no road speed data available from OSM.

We drop these segments and do not consider them for critical road segment identification as

we cannot calculate the corresponding RSI. Visual inspection showed that the road segments

without road speed information belong to side roads or rural areas too insignificant for OSM

users to collect information. To check this assumption, 25 road segments without RSI were

manually looked up on OSM18. Table 10 in the appendix and the related Figures 20 (a)-

20 (f) indicate that mostly residential roads and living streets are not covered, supporting

this conjecture.

Before calculating RNCi , we employ another filtering step at the time period level. Across

all road segments, we observe a median time period coverage of 85% of the 40 15-minute-

periods on a given day. Hence, for more than half of all road segments, we do not observe

any traffic in at least one 15-minute period in the specified rush hour time window during

the whole year. We argue that these road segments are probably not heavily affected by

large traffic volumes and congestion, so we drop all road segments for which we do not have

coverage of at least 34 (85% of 40) of the 40 15-minute time periods. This amounts to a

number of 21,900 road segments, or 46.31% of all road segments.

Finally, the RSI can be computed for 23,053 (48.75%) of all road segments. Figure 13

indicates that we can calculate the RSI for all major roads and traffic arterials as well as the

majority of the inner city, while the truncation of the sample affects suburban areas and side

streets (indicated in grey).

16An arbitrary choice, higher values likely lead to more precision but at the cost of losing even more of
possible information for the analysis.

17For example, if there is a 100m road segment with permissible road speeds 30 km/h and 50 km/h, and on
60m of this road segment, 50 km/h is the valid permissible maximum speed, we assume it to be valid for the
whole 100m road segment.

18The OSM IDs can be checked by visiting https://www.openstreetmap.org/way/26545704 and replacing
the id in the url.
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Figure 13: RSI of road segments in Berlin

Notes: This map depicts the road segments and colour codes them according to their RSI as described
in Section 5.2.2. Low values (red) denote bad traffic and possibly high congestion. Green indicates good
traffic conditions. For grey road segments, the RSI was not calculated.
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5.2.3 RSI Validation

The RSI is a measure to identify critical road segments where much traffic happens and

which are likely to be congested (or, at least, where traffic goes slow when compared to the

maximum speed limit). But are these segments really critical? We test the RSI’s relation

to two important real-life consequences of traffic, namely, the number of accidents and, the

average pollution. We also test its association to edge betweenness centrality. We define a

road segment i with Ri ≤ 0.5 as critical. These are road segments which are either congested

(Rvi,t ≤ 50) during most of the 15-minute-periods, or streets affected by rather slow average

road speeds as compared to the maximum permissible speed, or both.

To get the accident counts on a given road segment, we retrieve the number of accidents

for each road segment as follows: first, since we only consider the traffic during the main

hours on working days within the Berlin UC area, we filter the accident data accordingly.

After this step, 792 accidents remain. Second, we account for the fact that reported accidents

are always mapped onto the nearest junction and for the influence of accidents in the vicinity

of busy road segments by creating a 100m buffer around each road segment (cp. Figure

14). Then, for each road segment, we count how many accidents fall into the resulting road

segment polygon19. A visual inspection indicates that the RSI identifies almost all of the

places in Berlin, where accidents happen, and many where they do not (Figure 15). We

also estimated Spearman’s Rank correlation coefficient of the number of accidents on road

segment i and RSIi, which results in a test statistic of r ≈ −0.16, indicating a statistically

significant negative correlation (p < .001 in a one-sided test), as expected: road segments

with bad traffic conditions see more accidents.

Furthermore, we investigate the relation of the RSI and the degree of pollution. To do

so, we download sensor data including measured PM2.5 and PM10 concentration (in µg/m3)

from different locations in Berlin for every day in 2017. This data is available from the

public open-source project sensor.community20 and its respective archive API21. Users at

sensor.community can buy and install their own sensors capturing pollution, temperature,

humidity, noise, and other environmental factors and make it accessible for everyone by

sending the data to a public server. Sensor.community features data from over 13,000 active

sensors worldwide, and operates in 69 mostly European countries. Our sample of the data

19Note, that this artificially inflates the total number of accidents, because some accidents are counted twice
or more, so that the inflated number of accidents amounts to 4,047. We account for this inflation at a later
stage.

20https://sensor.community
21https://archive.sensor.community/csv per month/
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Figure 14: Spatial Buffering of road segments

Notes: Two road segments (blue lines) and a 100m buffer in both directions (transparent light blue)

comprises of daily measurements at around 8 AM taken from all sensors of the model SDS011

(as indicated by the API).

Considering measurements from the Berlin UC area only leaves us with data from 136

sensor stations. Then, for each station, we aggregate the data by taking the mean (and,

equivalently, the sum) over the PM2.5 and PM10 measurements, so that we have a yearly

mean, or total pollution exposure. We then lay a circular buffer of 100m around every

sensor station and subsequently intersect these buffers with the line geometries of our road

segments. The intuition here is that the buffer captures the pollution from the nearby road

segments, i.e., the traffic of a road segment falling into the buffer area of a station contributes

to the measured pollution. After the intersection, 647 road segments remain for correlation,

meaning that, on average, one station’s buffer overlaps with 4 to 5 road segments. Finally,

we calculate the Pearson correlation between RSI and PM2.5 and PM10 values, respectively.

Both correlation coefficients are very small and far from statistical significance (rRSI, PM2.5 ≈

0.04, p ≈ 0.30; rRSI, PM10 ≈ 0.01, p ≈ 0.84). Thus, the RSI is not indicative in terms of air

quality. After all, weather conditions, such as wind, air pressure, temperature, and humidity

play an important role for the concentration of particulate matter (UCAR Center for Science

Education, 2021), and yearly aggregated may not provide sufficient statistical variation for

the correct identification of such effects.

Finally, we also calculate the Pearson correlation coefficient between the RSI and edge

betweenness and we find a practically insignificant positive correlation of r ≈ 0.02, p < .10.

This is interesting, because it suggests that road betweenness is not at all helpful in predicting

goodness of traffic flow, which in turn can mean that highly between roads in the graph-

theoretic sense do not have to be congested if planning is done well.
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In conclusion, road segments with a lower RSI have a higher risk of traffic accidents, but

it does not seem to be a good direct predictor in terms of pollution and air quality, at least

not at the yearly level.

5.2.4 Estimating Accident Frequency

Our goal is to obtain a predictive model for the number of accidents on a given critical

(RSIi ≤ 0.5) road segment in a year. Many factors contribute to the event of a traffic

accident, including weather conditions (Andreescu & Frost, 1998; Eisenberg, 2004), time of

day and road design aspects (Ivan, Wang, & Bernardo, 2000), vehicle characteristics (Lie,

Tingvall, Krafft, & Kullgren, 2006), driver behaviour (de Winter & Dodou, 2010; Gicquel et

al., 2017), and traffic conditions (Retallack & Ostendorf, 2019). As we are predicting traffic

accidents on a yearly basis, individual driver behaviour is not helpful, and meaningful vehicle

characteristic averages are impossible to obtain. The problem with fine-grained predictor

variables such as temperature and precipitation is that for them to be useful, we would need

to model accidents on a very high resolution, as these variables only make sense for a sensible

time interval, such as hours. The yearly number of accidents in Berlin that we consider is

very small, so we end up with an excessive number of zero outcomes whenever we aggregate

over too small time windows. Moreover, our unit of observation are road segments, and

the available data is limited as to the number of possible predictors. For example, we have

no information about the curvature of an edge segment. For part of the data, information

about the number of lanes and the type of paving is available, but restricting the data

further might induce other issues, such as lower predictive performance due to high estimator

variance. Hence, we aim to predict the number of traffic accidents using the traffic volume

(total number of vehicles on a given road segment in the defined rush hour time window) per

year and the maximum permissible speed on the road segment.

5.2.5 Model Choice

Even on this very coarse level, and even though we consider only the busiest roads in terms

of RSI, there are still many road segments left with zero outcomes, i.e., road segments where

no accidents happen. Of the 8,017 road segments in question, 76.13% do not experience any

traffic-relevant accident in the year 2017. As common linear models are not well equipped

to handle data of this type, and because the outcome in question (number of accidents)

is discrete, two types of generalised linear models were considered: Zero-Inflated Poisson
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Regression and Zero-Inflated Negative Binomial Regression. Both models are mixture models

consisting of a binary classification model, such as a logit or probit model, and a Poisson,

or, respectively, Negative Binomial model. The binary response part models the probability

of a non-zero outcome, the second part models the counts, adjusted for the excessive zero

counts (Hilbe, 2011). Theory suggests that excessive zeros are generated by an independent

separate process (UCLA: Statistical Consulting Group, n. d.a).

Zero-Inflated Poisson Regression Let Yi denote the random variable counting the num-

ber of accidents to happen on road segment i and yi denote a realisation of Yi. It is assumed

that the generation of the excess zeros and the generation of the accident counts follow

separate processes. In the Zero-Inflated Poisson (ZIP) Model Lambert (1992),

Yi ∼


0, w.p. πi

Poisson(λi), w.p. 1− πi.
(13)

The probability of zero accidents happening on road segment i, πi can be estimated by a

binary response model of the form

πi = G(z′iγ), (14)

where zi are predictors, e.g., attributes of road segment i, and γ is an estimand of G. The

most common case for G is to be the logistic link function

G(zi,γ) =
exp(zTi γ)

1 + exp(zTi γ)
, (15)

but other models, e.g., probit models, are also possible. The standard Poisson model for

a count outcome can be written as follows:

P (yi|λi) =
λyii
yi!

exp(−λi), (16)

with

λi := E[Y |xi] = exp(xTi β), (17)

the mean of the predicted Poisson distribution. Hence, assuming Y follows a zero-inflated
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Poisson probability process, the probability distribution of Y can be written

P (Y = yi|xi, zi) =


πi + (1− πi) exp(−λi), yi = 0

(1− πi)
λ
yi
i
yi!

exp(−λi), yi > 0

(18)

with conditional expectation

E[yi|xi, zi] = 0 · πi + λi · (1− πi) = λi(1− πi) (19)

Note, that zi and xi need not necessarily be the same. The solutions for the parameters

are obtained by Maximum Likelihood estimation, i.e., by finding the optimum of

L =
∑
i:yi=0

log
(
exp(zTi γ) + exp(−λi)

)
+
∑
i:yi>0

yi log(λi)− log(yi)− λi (20)

−
n∑
i=1

log(1 + exp(zTi γ)).

See Appendix A.1 for the derivation of the log-likelihood. This does not yield a closed-

form solution, which is why numerical procedures have to be used. Nanjundan and Naika

(2012) discuss the solution methods in further detail.

Zero-Inflated Negative Binomial Regression The Zero-Inflated Negative Binomial

(ZINB) Model is a generalisation to the ZIP model in that it allows for overdispersion,

meaning that the variance is not restricted to be equal to the mean. Much like in the ZIP

model, we assume

Yi ∼


0, w.p. πi

NB(λi), w.p. 1− πi.
(21)

And again, πi is estimated by some binary response model. One parametrisation of the

negative binomial distribution is given by

h(yi) := P (Y = yi|λi, α) =
Γ(yi + α−1)

Γ(α−1)Γ(yi + 1)
(1− ri)α

−1
ryii , (22)

where α is a dispersion parameter and ri := λi
λi+α−1 = λiα

1+λiα
. Thus,
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h(yi) =
Γ(yi + α−1)

Γ(α−1)Γ(yi + 1)

(
1

1 + λiα

)α−1 (
λiα

1 + λiα

)yi
(23)

λi is the same as in the previous section. The probability distribution of Y under this

model is

P (Y = yi|xi, zi) =


πi + (1− πi)

(
1

1+λiα

)α−1

, yi = 0

(1− πi)h(yi), yi > 0

(24)

with conditional expectation

E[yi|xi, zi] = 0 · πi + λi · (1− πi) = λi(1− πi), (25)

as in the ZIP model (Berk & MacDonald, 2008). Again, regression coefficients and α are

estimated by maximum likelihood (see Appendix A.2 for the log-likelihood), using numerical

techniques. Details are found in Hilbe (2011) and Berk and MacDonald (2008).

5.3 Empirical Results

5.3.1 Model Estimation and Testing

For both types of models, we estimate the parameters with log traffic volume and maximum

permissible speed as explanatory variables. We choose a logistic regression for the zero-

inflation part of the model. Before the estimation, we removed road segments with more than

20 accidents in one year, because they are clear outliers with leverage, and not conducive to

the quality of the prediction model (cp. Figure 22 in the appendix) and we focus on predictive

aspects as foundation four our simulation outcomes, rather than on causal inference. Results

for this estimation are shown in Tables 6 and 7 in the Appendix. We summarise the most

important results here.

First, we note that in both cases, all coefficient estimates are statistically significant. The

main parameter values for log traffic volume (log flow n)22 and maximum permissible speed

are positive, indicating that more accidents happen when traffic volume or maximum road

speed are higher. Both intuition and literature suggest that this is the correct relationship,

as congestion (related to traffic volume during the peak hours) is often found to have a linear

positive association with traffic accidents (Retallack & Ostendorf, 2019). However, some

22Technically, we deal with yearly volume, which is a variant of flow, as flow is defined as the number of
passing vehicles per unit of time, here: year.
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studies also find a U-shaped relationship with highest occurrence of accidents in low and high

levels of congestion (Retallack & Ostendorf, 2019). Likewise, the parameter values for the

two independent variables for the logistic regression are negative in both models. Since the

outcome “no accident happens on road segment i” is coded as 1, this does make sense as

well, since it indicates that the probability of an accident not happening on a road segment

declines with increasing traffic or maximum permissible speed, ceteris paribus.

The interpretation of the parameters is the same for both models, but not straightforward.

It is β̂j = log(ŷxj=xj+1)− log(ŷxj=x) = log
(
ŷxj=xj+1

ŷxj=x

)
, i.e., they are the natural logarithm of

the ratio of expected counts if j increases by a unit (UCLA: Statistical Consulting Group,

n. d.b). Fortunately, our goal is prediction rather than inference, and so the coefficient itself

does not necessarily need to have an economic interpretation. For the ZINB, the dispersion

parameter α was estimated to be α ≈ 2.03 ⇐⇒ α−1 ≈ 0.49, thus the model detected some

overdispersion in the data and accounted for that23. Finally, we note that the log-likelihood

of the ZINB is greater than that of the ZIP.

To select the model with the best predictive performance, we evaluate both models on

the full dataset using 10-fold cross-validation (Hastie, Tibshirani, & Friedman, 2009, Chap-

ter 7) with root mean squared error (RMSE) and mean absolute error (MAE) as evaluation

measures24. Both models perform similarly under both evaluation criteria, with the ZIP

model performing slightly better in both cases (Figure 16, RMSEZIP ≈ 1.40 ≤ 1.42 ≈

RMSEZINB; MAEZIP ≈ 0.64 ≤ 0.66 ≈ MAEZINB. We therefore choose the ZIP model as

our preferred predictive model.

We perform some further model inspection. Figure 17 displays the probability mass

function and the cumulative distribution function of the counts in the data and as predicted

by our model. The ZIP model predicts zero counts slightly more often as there are in the

data, and compensates by predicting less one counts. Two and three counts are predicted

slightly more often than there are in the data, but otherwise the two distributions align very

well. More concisely, the model predicts 57.7% of the counts exactly correctly, overshoots

the count by one in 25.9% of the cases, and underestimates the count by one in 9.2% of the

cases. In 92.9% of the cases, the prediction is therefore correct within a tolerance area of size

one. This is exemplified in Figure 18.

23Note, that V[Pois(λi)] = λi and V[NB(λi, α)] = λi(1 + αλi) in this parametrisation.
24For true outcome vector y and prediction vector ŷ, RMSE :=

√
1
n
||ŷ − y||22 =

√
1
n

∑n
i=1(yi − ŷi)2 and

MAE := 1
n
||ŷ − y||1 = 1

n

∑n
i=1 |(yi − ŷi)|.
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Figure 16: Model testing - 10-fold cross-validation (RMSE / MAE)

Notes: Root mean squared error (left) and Mean absolute error (right) of the ZIP and ZINB models on
each training fold. Dashed lines represent overall means.

5.3.2 Traffic Accidents in 2020

Having decided on the predictive model to use, we now want to estimate the number of

accidents that were avoided in 2020 due to a reduction in traffic volume. To assess the actual

reduction of traffic volume, we downloaded traffic detector data from the years 2017 and

2020 from the traffic information centre Berlin25. This dataset contains data from 529 unique

traffic detectors at different locations in Berlin. For each traffic detector, hourly vehicle counts

and mean speeds are available. We filter this data to only include measurements from the

specified rush hour time window on weekdays. We further restrict the sample to only include

measurements from April to December. Even though the first lockdown in Germany came

into effect on March 16th, we cannot take these two more weeks into consideration, because

the data for 2017 is only available from April onward. We also remove any measurements

which may be inaccurate (as indicated by a “quality” variable in the data). Observations

with less than perfect quality amount to 1.92% of the filtered data. Then, we aggregate the

data on the detector level by taking the mean. This is done to prevent missing measurements

in either the 2017 or 2020 dataset to distort the final estimate. Finally, we take the sum of

the aggregated means for each of the years and divide the sum of 2020 by the sum of 2017

to arrive at an estimate of how much less traffic there was in 2020. The estimate is 87.29%,

meaning that over the course of post-pandemic Berlin in 2020, total traffic went down by

about 13% compared with the year 2017. As a sanity check, we made the same comparison

with the year 2019 and it produced a similar estimate of 88.47%. In Figure 19, daily vehicle

25https://api.viz.berlin.de/daten/verkehrsdetektion
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Figure 17: Model fit - density and distribution functions

Notes: Probability mass function (top) and cumulative distribution function (bottom) of the data and
ZIP model predictions.

counts are plotted against the yearly mean vehicle count against the mean (at every detector)

of the year 2017. The stark drop at the time of the first lockdown is clearly visible, the second

one beginning on December 16th is even more pronounced26.

As a next step, we draw a 87.29% sample of our trip data. As the data is assumed to be

representative, we abstain from stratified sampling in order to keep it that way. Using this

sample, we count the new traffic on Berlin’s roads as described in Section 5.2.2. We then

select those 8,011 road segments that were found to be critical (RSIi ≤ 0.5) in the overall

2017 data. These are fed into the ZIP model from Section 5.3.1. Our model predicts a total

of 3,217 accidents, thus a reduction by 616 if traffic is reduced by approximately 13%. This

constitutes an unproportional reduction in traffic accidents by 16%. When we correct for the

accident inflation induced by our variable specification, this reduces to a predicted reduction

26Similar figures for single streets were available at https://viz.berlin.de/2020/12/verkehrsstaerke/

and can still be found using internet archives.
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Figure 18: Comparison of predicted and actual vehicle counts

Notes: Predicted accident counts and actual accident counts, sorted by count of actually observed vehicles
in descending order. X axis displays observations in the full dataset.

of 127 traffic-relevant accidents27.

Since our accident data does not include information about injuries, fatalities, or material

damage, we have to perform a rough estimation in order to evaluate the monetary impact

associated with the reduction in accidents. The German Federal Statistical Office provides

traffic accident statistics for every year and state (Bundesland), with a subdivision of acci-

dents into different types (Statistisches Bundesamt, 2018) and the Federal Road Research

Institute calculates the average cost per traffic accident of each type for every year. Table 3

combines this information and reports the total number and percentage of accidents observed

on German roads by category, as well as their estimated economic cost (Bundesanstalt für

Straßenwesen, 2021). In general, accidents are subdivided into accidents with injury to per-

273,217 accidents are more than the original 792 accidents in our data, but recall that for the original model
estimation, accident data was artificially inflated because accidents were counted for several road segment
buffers. Inflated accidents for the original data (without dropped outliers) amount to 3,833, i.e., the original
accident data was inflated by the factor 4.84. Assuming that in 2020, accidents would have scaled in the same
way, we divide the difference of inflated accidents (616) by this factor and obtain 127.27 ≈ 127 traffic-relevant
accidents in Berlin that happened less in 2020 when compared to 2017. This kind of extrapolation probably
comes with systematic noise, because less overall traffic might lead to even less accidents exactly there where
many normally busy roads (with high RSI) overlap. However, this implies that the inflation factor will be
smaller for areas of the network with less traffic. Therefore our estimate obtained will likely be conservative.
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Figure 19: Traffic volume as counted by traffic detectors in Berlin

Notes: Only traffic between 06:00 - 08:59 and 14:00 - 19:59 is considered. Blue bars represent traffic in
2020 for each day, the black dashed line is the mean of 2020 (= 100%) during weekdays. For each detector,
the daily traffic volume in 2020 was computed and then compared to the 2017 mean on that detector.
Finally, percentages were averaged over all detectors.

sons and damage-only-accidents. In both cases, the upper part of Table 3 only displays the

cost associated with the material damage. In the 14,493 accidents that caused (any) bodily

injury, 17,420 people were injured. This means that in every accident that induced bodily

injury, on average 1.2 persons were hurt. The lower part of Table 3 reports the cost for each

and all cost associated with the injuries for different types of personal damage. In total, the

143,442 accidents that happened in Berlin entailed a total economic cost of 1,457,369,659

e. This sum corresponds to 4.26% of the total cost caused by traffic accidents in Germany

in the year 2017. This percentage is also approximately equal to Berlin’s share of the total

population in 2017.

Assuming that the distribution into categories is the same for 2020, we can now calculate

the economic savings. Drawing from Tang and Ahlfeldt (2020), we express the predicted

economic savings on the critical road segments as

B =

K∑
k=1

(Y 2020
k − Ŷ 2017

k )×M2017
k , (26)

where B is the amount of predicted economic savings, Y 2017
k is the number of accidents

of each type k in Berlin in the year 2017, as specified above, Ŷk,2020 is the prediction for

this type of accident given the simulated traffic data of 2020, and M2017
k denotes the average

monetized cost from an additional accident of type k. Instead of providing average values for
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Table 3: Accidents and associated costs in Berlin and Germany in the year 2017

Accidents Count Share
avg. cost
/ accident

Total Cost

with injury to persons 14,493 10.10% 17,391∗ e 252,047,763 e

in the strict sense† 1,233 0.86% 22,839 e 28,160,487 e

damage-only
other accidents
under the influence
of intoxicants

806 0.56% 6,177 e 4,978,662 e

others 126,910 88.47% 6,177 e 783,923,070 e

Subtotal 143,442 1,069,109,982 e

Accident victims Count Share
avg. cost
/ person

Total Cost

killed 36 0.21% 1,150,234 e 41,408,424 e
seriously injured 2,316 13.30% 116,335 e 269,431,860 e
slightly injured 15,068 86.50% 5,138 e 77,419,384 e

Subtotal 17,420 388,259,384 e

German Total Population 82,521,653 Total cost Germany 34,230,000,000 e
Berlin Total Population 3,574,830 Total cost Berlin 1,457,369,650 e
Share 4.33% Share 4.26%

Notes: Accidents in 2017 and associated incurred economic cost. Accident counts and economic costs per
accident / person taken from Statistisches Bundesamt (2018) and Bundesanstalt für Straßenwesen (2021).
In the 14,493 accidents with damage to persons, a total of 17,420 (factor: 1.20) people were injured or
killed. Berlin has a share of total incurred economic cost by accidents that is approximately equal to its
share of population. Numbers may not sum up to totals because of rounding errors.
∗: Costs in the upper panel are only associated with the material damage, as costs related to physical
damage to persons are outlined in the bottom part.
†: Accidents with only material damage in the strict sense is a definition by Statistisches Bundesamt
(2018) and is used for accidents whose cause is a misdemeanour or a criminal act relating to road traffic,
and after which a vehicle has to be towed away from the accident site.

M2017
k directly, we instead calculate the projected number of accidents of every type for the

total of 127 accidents that were avoided in 2020 as predicted by our model in Table 4. The

accuracy of these calculations depends on three factors: (1) the accuracy of our predictive

model, (2) the accuracy of the “inflation factor” outlined above, and (3) whether or not the

distribution of accident types is the same in 2020 as in 2017. We arrive at an estimate of

1,251,525 e in total savings. Considering that these are only the economic savings associated

with avoided traffic-relevant accidents on critical road segments in the Berlin UC area during

the rush hour time windows, this figure is considerable.

But this is just the estimate for a very limited sample of accidents, namely the traffic-

relevant accidents during the rush hour on weekdays. If we extrapolate this number to the

total number of avoided traffic-relevant accidents in Berlin, we arrive at 127.17
791 × 3, 224 ≈ 518
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Table 4: Estimated traffic-relevant accidents and associated savings in Berlin and Germany
for the year 2020 during the rush hour time windows defined in Section 5.2.2

Accidents Count
avg. cost
/ accident

Total Savings

with injury to persons 127× 10.10% ≈ 13 17,391 e 226,083 e

in the strict sense 123× 0.86% ≈ 1 22,839 22,839 e

damage-only
other accidents
under the influence
of intoxicants

127× 0.56% ≈ 1 6,177 e 6,177 e

others 127× 88.47% ≈ 112 6,177 e 691,824 e

Subtotal 127 946,923 e

Accident victims Count
avg. cost
/ person

Total Savings

killed 16× 0.21% ≈ 0 1,150,234 e 0 e
seriously injured 16× 13.30% ≈ 2 116,335 e 232,670 e
slightly injured 16× 86.50% ≈ 14 5,138 e 71,932 e

Subtotal 13× 1.2 ≈ 16 304,602 e

Total Savings 1,251,525 e

Notes: 127 accidents were predicted to happen less on critical road segments in the Berlin UC area during
rush hours on weekdays. Distributional probabilities (percentages) were taken from 2017 (Table 3). In the
13 accidents with injury to persons, 16 people were hurt overall, but no one died. The factor 1.2 is also
taken from the reference Table 3. Numbers may not sum up to totals because of rounding errors.

avoided accidents28, making up for savings of 5,051,417 e (cp. Table 11 in the appendix).

Finally, extrapolating the number to the total number of accidents avoided in Berlin amounts

to 127.17
791 × 143, 442 ≈ 23, 061 accidents, saving 234,502,891 e and, importantly, six lives.

The estimates produced here turn out to be relatively precise when evaluated against the

true accident numbers, which are published in Statistisches Bundesamt (2021). In fact, the

number of accidents in Berlin is 123,928, so that our estimate of (1 − 127.17
791 ) × 143, 442 ≈

120, 381 total traffic accidents is only off by 3,547, or 2.86%. Using the same cost figures

for each accident type as in 2017, the total actual cost of traffic accidents in Berlin 2017

amounts to 1,281,917,077 e, our estimate is 1,222,866,759 e, therefore we underestimate

the cost by 59,050,318 e, again only 4.61%. A good part of this deviance is explained by

an extraordinarily high number of 50 killed accident victims in 2020, while our model only

predicted 30 for 2020. Interestingly, too, the factor of injured people in each accident with

bodily injury is almost as high as in 2017 (1.17 vs. 1.20). These findings are summarised in

Table 5, Table 12 displays actual accident numbers and associated costs for 2020.

28Recall that 791 is the number of accidents in the Berlin UC area during rush hours and 3,224 is the total
number of accidents in Berlin as per the Inrix accident data (Section 3.2).
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6 Conclusion

In this thesis, we analysed the Berlin traffic network using a network representation with

data from OpenStreetMap. We found that Berlin’s OSM UC network representation is simi-

lar in properties to previously used representations, and we pointed out special characteristics

pertaining to Berlin’s traffic network. Using high-resolution real-world traffic data, we also

implemented a method to identify potentially congested road segments in the streets of Berlin,

and used these critical segments to build a model predicting accidents on busy roads. Finally,

using this model, we calculated the estimated economic savings of less busy roads during the

COVID-19 pandemic in 2020 and arrived at total savings of approximately 1.251M e resulting

only from avoided accidents on critical roads during the rush hour on weekdays. Extrapo-

lating the data onto total accidents in Berlin yielded an astoundingly precise estimate of

120,381 accidents, with the real number for 2020 being 123,928. Estimated savings for 2020

amount to approximately 230M e while real savings were only about 175M e mostly due to

a different distribution of accident types in 2020. In any case, our model predicts the true

number of accidents within a margin of 2.86% and based on this, our calculations come as

close as 4.61% to the truth. Both savings figures are economically significant.

A second contribution of our work is that we exemplified how approaches from compu-

tational network science can aid in economic analyses. Computational network science is

well-equipped to work with big data such as ours, and the approach taken in our case study

serves as evidence that even with relatively simple economic models, very precise estimations

can be performed if the right data and method are at hand. We also note that the approach

taken here can be used for any street network and is not limited to Berlin. Furthermore,

any reduction in traffic can be modelled with our approach, given suitable data, and the

COVID-19 case study is just an example.

Our results also indirectly hint at policy implications: less automotive traffic on the

streets not only reduces pollution but also accidents. Getting people off the streets, for ex-

ample by enhancing public transportation offerings and incentivising the usage of alternative

transportation methods and carpooling, saves money and lives.

As we only looked at one very specific, real traffic reduction, we encourage future re-

searchers to examine the effects of differing levels of traffic reduction to examine possible

effects of scale, and study the association of traffic accidents and traffic volume across volume

levels. It would also be interesting to dig deeper into the spatial and temporal distribution of

accidents to find areas or times where a traffic reduction would make sense most. Moreover,
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to validate the findings of this thesis, examples from other German and international cities

would be insightful.

Considering city road and mobility networks, further research could focus on comprehen-

sive reviews and graph-theoretic comparisons of Urban Centre road networks as defined and

provided by Boeing (in press). Given the many technological developments of the past few

years (OSM, OSMNx), this has become a feasible endeavour. Using similar data as ours future

research in computational network science and economics could also focus on topic such as

“traffic justice”, e.g., by examining who the main causers of traffic on critical road segments

are, and what other interactions critical road segments have with their environment (e.g.

concerning economic activity or environmental aspects).

Finally, we note that this work has limitations, too. First, in the network analysis of the

Berlin road network, we primarily focussed on its undirected representation. We did this to

have direct comparisons with prior work in the field, but as direction is an important aspect

in real-life traffic, omitting this information might influence results, for example, when look-

ing at centrality measures. Second, in the case study, we were constrained by the data to

produce a model that accommodates more predictors actually associated with traffic acci-

dents, such as weather conditions. Although the model already performs well with only two

explanatory variables, the estimates produced might be even more precise with additional

relevant information. Moreover, the accident counting method allows for some imprecision

and leads to an inflated total number of accidents, a factor that we have to account for, and

which might induce additional noise. Finally, we base our extrapolations on data stemming

from only traffic-relevant accidents during the rush hour, off-hour accidents or non-traffic-

relevant accidents might have other characteristics, inducing more systematic noise into our

calculations. Nevertheless, when compared with the real figures, our estimates are still very

precise.
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A Calculations

A.1 Zero-Inflated Poisson Regression Log-Likelihood

With πi
1−πi = exp(zTi γ), and 1− πi = 1

1+exp(zTi γ)
,

log
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i

P (yi|xi, zi)

)

= log

 ∏
i:yi=0
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A.2 Zero-Inflated Negative Binomial Regression Log-Likelihood

With πi
1−πi = exp(zTi γ), and 1− πi = 1

1+exp(zTi γ)
,
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At (∗), we used

ln

(
Γ(xi + α−1)

Γ(α−1)

)
=

xi−1∑
j=0

ln(j + α−1), (29)

which is easily shown by applying the property Γ(x+ 1) = xΓ(x) repeatedly.
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B Figures

Figure 20: Examples of main road segments without maximum speed information

(a) (b) (c)

(d) (e) (f)

Notes: These panels depict road segments for which no maximum permissible road speed information is
available on OSM. They are classified as (a) “living street”, (b) “residential”, (c) “secondary”, (d) “sec-
ondary link”, (e) “tertiary”, (f) “unclassified” and demonstate why these types of segments can reasonably
be expected to often lack max speed information.
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Figure 21: Isochrones in Dresden

Notes: This map depicts the road segments and polygonised isochrones of Dresden. Point of reference is
a point in Dresden’s city center. Other than in Berlin (Figure 12), isochrones do not extend radially, as
there seem to be faster roads towards the north than towards the east of the city. Again, brighter areas
are reachable faster from a point of the city centre, and the brackets are 5, 10, 15, 20, an 25 minutes.

Figure 22: Log traffic volume on road segments vs. number of accidents

Notes: Red observations are considered outliers and have thus been removed.
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C Tables

Table 6: Zero-Inflated Poisson Regression Results

Dep. Variable: n accidents No. Observations: 8011
Model: ZeroInflatedPoisson Df Residuals: 8008
Method: MLE Df Model: 2
converged: True Log-Likelihood: -7041.5

coef std err z P> |z| [0.025 0.975]

Logistic Regression
const 5.7469 0.304 18.903 0.000 5.151 6.343
log flow n -0.3608 0.030 -11.932 0.000 -0.420 -0.302
maxSpeed -0.0396 0.005 -7.875 0.000 -0.050 -0.030

Poisson Regression
const -2.7266 0.153 -17.791 0.000 -3.027 -2.426
log flow n 0.1567 0.017 9.220 0.000 0.123 0.190
maxSpeed 0.0347 0.003 12.223 0.000 0.029 0.040

Notes: The dependent variable is the number of accidents, the independent variables are log traffic volume
(log flow n) and maximum permissible road speed.

Table 7: Zero-Inflated Negative Binomial Regression Results

Dep. Variable: n accidents No. Observations: 8011
Model: ZeroInflatedNegativeBinomial Df Residuals: 8008
Method: MLE Df Model: 2
converged: True Log-Likelihood: -6594.2

coef std err z P> |z| [0.025 0.975]

Logistic Regression
const 9.7783 1.028 9.513 0.000 7.764 11.793
log flow n -0.7011 0.107 -6.550 0.000 -0.911 -0.491
maxSpeed -0.1054 0.014 -7.579 0.000 -0.133 -0.078

Neg. Bin. Regression
const -3.5612 0.334 -10.650 0.000 -4.217 -2.906
log flow n 0.2520 0.031 8.168 0.000 0.192 0.313
maxSpeed 0.0183 0.005 3.656 0.000 0.009 0.028
alpha 2.0305 0.178 11.402 0.000 1.681 2.380

Notes: The dependent variable is the number of accidents, the independent variables are log traffic volume
(log flow n) and maximum permissible road speed. alpha is the dispersion parameter α, as indicated in
5.2.5.
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Table 9: Attributes of Berlin’s UC network

Variable Name Description Value

country Primary country name germany
core city Urban area core city name berlin
uc id Urban area’s unique identifier in UCD 2851
cc avg dir Avg clustering coefficient (unweighted, directed) 0.037
cc avg undir Avg clustering coefficient (unweighted, undirected) 0.052
cc wt avg dir Avg clustering coefficient (weighted, directed) 0.001
cc wt avg undir Avg clustering coefficient (weighted, undirected) 0.001
circuity Ratio of street lengths to straight-line distances 1.039
elev iqr Interquartile range of node elevations, meters 12
elev mean Mean node elevation, meters 44.709
elev median Median node elevation, meters 44
elev range Range of node elevations, meters 66
elev std Standard deviation of node elevations, meters 8.240
grade mean Mean absolute street grade (incline) 0.018
grade median Median absolute street grade (incline) 0.009
intersect count Count of physical street intersections 24,908
intersect count clean Count of physical street intersections (after merging

nodes within 10 meters geometrically)
21,083

intersect count clean topo Count of physical street intersections (after merging
nodes within 10 meters topologically)

21,189

k avg Avg node degree (undirected) 3.008
length mean Mean street segment length (undirected edges), me-

ters
142.339

length median Median street segment length (undirected edges), me-
ters

113.449

length total Total street length (undirected edges), meters 6,066,366.461
node count Count of nodes 28,339
orientation entropy Entropy of street bearings 3.571
orientation order Orientation order of street bearings 0.011
pagerank max Maximum PageRank value of any node 0.000
prop 4way Proportion of nodes that represent 4-way street inter-

sections
0.263

prop 3way Proportion of nodes that represent 3-way street inter-
sections

0.601

prop deadend Proportion of nodes that represent dead-ends 0.121
self loop proportion Proportion of edges that are self-loops 0.002
straightness The inverse of circuity 0.963
street segment count Count of street segments (undirected edges) 42,619
resident pop Total resident population, 2015 (UCD) 3,271,872
area Area within boundary polygon, km2 (UCD) 686
built up area Built-up surface area in 2015, km2 (UCD) 433.529

Notes: Selected variables, variable descriptions, and their values from Berlin’s UC network (taken from
Boeing (2020b)). Numerical descriptive statistics are rounded to the third decimal.
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Table 10: Twenty-five road segments without available maximum speed information from
OSM

OSM ID Street name and Post code OSM highway tag

4515896 Neufertstraße, 14509 living street
4978512 Lynarstraße, 13585 residential
5116453 Winckelmannstraße, 12487 residential
6229931 Bornitzstraße. 10365 residential
8792775 Werkstättenweg, 14055 unclassified
11405545 Schwarzheider Straße, 12627 residential
12305962 Auguste-Viktoria-Allee, 13403 living street
15920080 Klausenerplatz, 14059 living street
23453218 Helmstraße, 10827 living street
25368898 Königsheideweg, 12487 tertiary
26406925 Hansastraße, 13088 residential
27156341 Lichterfelder Allee, 14513 living street
29112676 Am Steinberg, 13086 secondary
44202827 Schillerstraße, 10625 living street
89583721 Chemnitzer Straße, 12621 living street
90094622 Helga-Haase-Straße, 13053 living street
98723438 Wilhelmstraße, 13595 secondary link
160130964 Nonnendamm, 13627 residential
167410411 Straße 49, 13089 residential
195386065 Platanenstraße, 13156 residential
415858612 Joachim-Böhmer-Straße, 13053 living street
454285423 Große Hamburger Straße, 10115 living street
793150994 Crellestraße, 10827 living street
821773653 Große-Leege-Straße, 13055 residential
868550032 Riedemannweg, 13607 unclassified

Notes: Most of the road segments are tagged residential roads or living streets. The few secondary streets
are road segments on bigger streets for which assigning a speed limit is nonsensical, as outlined in Figures
20 (a)-20 (f). Tag descriptions are available at https://wiki.openstreetmap.org/wiki/Category:Tag

descriptions for key %22highway%22
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Table 11: Estimated traffic-relevant accidents and associated savings in Berlin and Germany
for the year 2020

Accidents Count
avg. cost
/ accident

Total Savings

with injury to persons 518× 10.10% ≈ 52 17,391 e 904,332 e

in the strict sense 518× 0.86% ≈ 4 22,839 e 91,356 e

damage-only
other accidents
under the influence
of intoxicants

518× 0.56% ≈ 3 6,177 e 18,531 e

others 518× 88.47% ≈ 458 6,177 e 2,829,066 e

Subtotal 519 3,843,285 e

Accident victims Count
avg. cost
/ person

Total Savings

killed 63× 0.21% ≈ 0 1,150,234 e 0 e
seriously injured 63× 13.30% ≈ 8 116,335 e 930,680 e
slightly injured 63× 86.50% ≈ 54 5,138 e 277,452 e

Subtotal 52× 1.2 ≈ 63 1,208,132 e

Total Savings 5,051,417 e

Notes: Estimated traffic-relevant accidents. For 2020, 518 accidents are predicted to be avoided. Savings
are calculated using the cost estimates (based on 2017 figures from Bundesanstalt für Straßenwesen (2021))
for each accident type. Numbers may not sum up to totals because of rounding errors.

Table 12: Accidents and associated costs in Berlin in the year 2020

Accidents Count Share
avg. cost
/ accident

Total Cost

with injury to persons 12,861 10.38% 17,391 e 223,665,651 e

in the strict sense 880 0.71% 22,839 e 20,098,320 e

damage-only
other accidents
under the influence
of intoxicants

678 0.55% 6,177 e 4,188,006 e

others 109,509 88.37% 6,177 e 676,437,093 e

SUbtotal 123,928 924,389,070 e

Accident victims Count Share
avg. cost
/ person

Total Cost

killed 50 0.33% 1,150,234 e 57,511,700 e
seriously injured 2,007 13.37% 116,335 e 233,484,345 e
slightly injured 12,949 86,29% 5,138 e 66,531,962 e

Subtotal 15,006 357,528,007 e

Total Cost 1,281,917,077 e

Difference to 2017 Total (Real savings) 175.452.573 e

Notes: Accidents in 2020 and associated incurred economic cost. Accident counts and economic costs per
accident / person taken from Statistisches Bundesamt (2021) and Bundesanstalt für Straßenwesen (2021).
Note that the costs per accident and per person are taken from the year 2017 for better comparison. In
the 12,861 accidents with injury to persons, 1.17 as many, i.e. 15,006, people were hurt. Numbers may
not sum up to totals because of rounding errors.
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